big work on owned groups

master
Mike 5 years ago
parent 917ca5ffdc
commit 8f401ec491

@ -28,7 +28,6 @@ pub fn Storage(comptime CompT: type) type {
/// the registry is the main gateway to all ecs functionality. It assumes all internal allocations will succeed and returns /// the registry is the main gateway to all ecs functionality. It assumes all internal allocations will succeed and returns
/// no errors to keep the API clean and because if a component array cant be allocated you've got bigger problems. /// no errors to keep the API clean and because if a component array cant be allocated you've got bigger problems.
/// Stores a maximum of u8 (256) component Storage(T).
pub const Registry = struct { pub const Registry = struct {
handles: EntityHandles, handles: EntityHandles,
components: std.AutoHashMap(u32, usize), components: std.AutoHashMap(u32, usize),
@ -39,21 +38,23 @@ pub const Registry = struct {
/// internal, persistant data structure to manage the entities in a group /// internal, persistant data structure to manage the entities in a group
const GroupData = struct { const GroupData = struct {
hash: u32, hash: u64,
entity_set: SparseSet(Entity) = undefined, /// optional. there will be an entity_set for non-owning groups and current for owning size: u8,
/// optional. there will be an entity_set for non-owning groups and current for owning
entity_set: SparseSet(Entity) = undefined,
owned: []u32, owned: []u32,
include: []u32, include: []u32,
exclude: []u32, exclude: []u32,
registry: *Registry, registry: *Registry,
current: usize, current: usize,
pub fn initPtr(allocator: *std.mem.Allocator, registry: *Registry, hash: u32, owned: []u32, include: []u32, exclude: []u32) *GroupData { pub fn initPtr(allocator: *std.mem.Allocator, registry: *Registry, hash: u64, owned: []u32, include: []u32, exclude: []u32) *GroupData {
std.debug.assert(std.mem.indexOfAny(u32, owned, include) == null); // std.debug.assert(std.mem.indexOfAny(u32, owned, include) == null);
std.debug.assert(std.mem.indexOfAny(u32, owned, exclude) == null); // std.debug.assert(std.mem.indexOfAny(u32, owned, exclude) == null);
std.debug.assert(std.mem.indexOfAny(u32, include, exclude) == null); // std.debug.assert(std.mem.indexOfAny(u32, include, exclude) == null);
var group_data = allocator.create(GroupData) catch unreachable; var group_data = allocator.create(GroupData) catch unreachable;
group_data.hash = hash; group_data.hash = hash;
group_data.size = @intCast(u8, owned.len + include.len + exclude.len);
if (owned.len == 0) { if (owned.len == 0) {
group_data.entity_set = SparseSet(Entity).init(allocator); group_data.entity_set = SparseSet(Entity).init(allocator);
} }
@ -107,6 +108,7 @@ pub const Registry = struct {
const ptr = self.registry.components.getValue(self.owned[0]).?; const ptr = self.registry.components.getValue(self.owned[0]).?;
if (!(@intToPtr(*Storage(u1), ptr).set.index(entity) < self.current)) { if (!(@intToPtr(*Storage(u1), ptr).set.index(entity) < self.current)) {
for (self.owned) |tid| { for (self.owned) |tid| {
// store.swap hides a safe version that types it correctly
const store_ptr = self.registry.components.getValue(tid).?; const store_ptr = self.registry.components.getValue(tid).?;
var store = @intToPtr(*Storage(u1), store_ptr); var store = @intToPtr(*Storage(u1), store_ptr);
store.swap(store.data().*[self.current], entity); store.swap(store.data().*[self.current], entity);
@ -135,6 +137,47 @@ pub const Registry = struct {
} }
} }
} }
/// finds the insertion point for this group by finding anything in the group family (overlapping owned)
/// and finds the least specialized (based on size). This allows the least specialized to update first
/// which ensures more specialized (ie less matches) will always be swapping inside the bounds of
/// the less specialized groups.
fn findInsertionIndex(self: GroupData, groups: []*GroupData) ?usize {
for (groups) |grp, i| {
var overlapping: u8 = 0;
for (grp.owned) |grp_owned| {
if (std.mem.indexOfScalar(u32, self.owned, grp_owned)) |_| overlapping += 1;
}
if (overlapping > 0 and self.size <= grp.size) return i;
}
return null;
}
// TODO: is this the right logic? Should this return just the previous item in the family or be more specific about
// the group size for the index it returns?
/// for discards, the most specialized group in the family needs to do its discard and swap first. This will ensure
/// as each more specialized group does their discards the entity will always remain outside of the "current" index
/// for all groups in the family.
fn findPreviousIndex(self: GroupData, groups: []*GroupData, index: ?usize) ?usize {
if (groups.len == 0) return null;
// we iterate backwards and either index or groups.len is one tick passed where we want to start
var i = if (index) |ind| ind else groups.len;
if (i > 0) i -= 1;
while (i >= 0) : (i -= 1) {
var overlapping: u8 = 0;
for (groups[i].owned) |grp_owned| {
if (std.mem.indexOfScalar(u32, self.owned, grp_owned)) |_| overlapping += 1;
}
if (overlapping > 0) return i;
}
return null;
}
}; };
pub fn init(allocator: *std.mem.Allocator) Registry { pub fn init(allocator: *std.mem.Allocator) Registry {
@ -201,7 +244,7 @@ pub const Registry = struct {
/// Direct access to the list of entities of a given pool /// Direct access to the list of entities of a given pool
pub fn data(self: Registry, comptime T: type) []Entity { pub fn data(self: Registry, comptime T: type) []Entity {
return self.assure(T).data(); return self.assure(T).data().*;
} }
pub fn valid(self: *Registry, entity: Entity) bool { pub fn valid(self: *Registry, entity: Entity) bool {
@ -362,18 +405,23 @@ pub const Registry = struct {
return self.singletons; return self.singletons;
} }
/// Checks whether the given component belongs to any group pub fn sort(self: *Registry, comptime T: type) void {
pub fn sortable(self: Registry, comptime T: type) bool { const comp = self.assure(T);
return true; std.debug.assert(comp.super == 0);
unreachable;
}
/// Checks whether the given component belongs to any group. If so, it is not sortable directly.
pub fn sortable(self: *Registry, comptime T: type) bool {
return self.assure(T).super == 0;
} }
pub fn view(self: *Registry, comptime includes: var, comptime excludes: var) ViewType(includes, excludes) { pub fn view(self: *Registry, comptime includes: var, comptime excludes: var) ViewType(includes, excludes) {
if (@typeInfo(@TypeOf(includes)) != .Struct) std.debug.assert(@typeInfo(@TypeOf(includes)) == .Struct);
@compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(args))); std.debug.assert(@typeInfo(@TypeOf(excludes)) == .Struct);
if (@typeInfo(@TypeOf(excludes)) != .Struct)
@compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(excludes)));
std.debug.assert(includes.len > 0); std.debug.assert(includes.len > 0);
// just one include so use the optimized BasicView
if (includes.len == 1 and excludes.len == 0) if (includes.len == 1 and excludes.len == 0)
return BasicView(includes[0]).init(self.assure(includes[0])); return BasicView(includes[0]).init(self.assure(includes[0]));
@ -398,13 +446,12 @@ pub const Registry = struct {
return MultiView(includes.len, excludes.len); return MultiView(includes.len, excludes.len);
} }
/// creates an optimized group for iterating components. Note that types are ORDER DEPENDENDANT for now, so always pass component
/// types in the same order.
pub fn group(self: *Registry, comptime owned: var, comptime includes: var, comptime excludes: var) GroupType(owned, includes, excludes) { pub fn group(self: *Registry, comptime owned: var, comptime includes: var, comptime excludes: var) GroupType(owned, includes, excludes) {
if (@typeInfo(@TypeOf(owned)) != .Struct) std.debug.assert(@typeInfo(@TypeOf(owned)) == .Struct);
@compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(owned))); std.debug.assert(@typeInfo(@TypeOf(includes)) == .Struct);
if (@typeInfo(@TypeOf(includes)) != .Struct) std.debug.assert(@typeInfo(@TypeOf(excludes)) == .Struct);
@compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(includes)));
if (@typeInfo(@TypeOf(excludes)) != .Struct)
@compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(excludes)));
std.debug.assert(owned.len + includes.len > 0); std.debug.assert(owned.len + includes.len > 0);
std.debug.assert(owned.len + includes.len + excludes.len > 1); std.debug.assert(owned.len + includes.len + excludes.len > 1);
@ -428,9 +475,11 @@ pub const Registry = struct {
// create a unique hash to identify the group // create a unique hash to identify the group
var maybe_group_data: ?*GroupData = null; var maybe_group_data: ?*GroupData = null;
comptime const hash = owned.len + (31 * includes.len) + (31 * 31 * excludes.len); comptime const hash = comptime hashGroupTypes(owned, includes, excludes);
for (self.groups.items) |grp| { for (self.groups.items) |grp| {
// TODO: these checks rely on owned/include/exclude to all be in the same order. fix that.
// TODO: prolly dont need the mem.eql since hash is the same damn thing
if (grp.hash == hash and std.mem.eql(u32, grp.owned, owned_arr[0..]) and std.mem.eql(u32, grp.include, includes_arr[0..]) and std.mem.eql(u32, grp.exclude, excludes_arr[0..])) { if (grp.hash == hash and std.mem.eql(u32, grp.owned, owned_arr[0..]) and std.mem.eql(u32, grp.include, includes_arr[0..]) and std.mem.eql(u32, grp.exclude, excludes_arr[0..])) {
maybe_group_data = grp; maybe_group_data = grp;
break; break;
@ -443,36 +492,101 @@ pub const Registry = struct {
if (owned.len == 0) { if (owned.len == 0) {
return BasicGroup(includes.len, excludes.len).init(&group_data.entity_set, self, includes_arr, excludes_arr); return BasicGroup(includes.len, excludes.len).init(&group_data.entity_set, self, includes_arr, excludes_arr);
} else { } else {
return OwningGroup(owned.len, includes.len, excludes.len).init(&group_data.current, self, owned_arr, includes_arr, excludes_arr); var first_owned = self.assure(owned[0]);
return OwningGroup(owned.len, includes.len, excludes.len).init(&first_owned.super, &group_data.current, self, owned_arr, includes_arr, excludes_arr);
}
}
const size = owned.len + includes.len + excludes.len;
// before adding the group we need to do some checks to make sure there arent other owning groups with the same types
if (std.builtin.mode == .Debug and owned.len > 0) {
std.debug.warn("\n", .{});
for (self.groups.items) |grp| {
if (grp.owned.len == 0) continue;
var overlapping: u8 = 0;
for (grp.owned) |grp_owned| {
if (std.mem.indexOfScalar(u32, &owned_arr, grp_owned)) |_| overlapping += 1;
}
var sz: u8 = overlapping;
for (grp.include) |grp_include| {
if (std.mem.indexOfScalar(u32, &includes_arr, grp_include)) |_| sz += 1;
}
for (grp.exclude) |grp_exclude| {
if (std.mem.indexOfScalar(u32, &excludes_arr, grp_exclude)) |_| sz += 1;
}
const check = overlapping == 0 or ((sz == size) or (sz == grp.size));
std.debug.warn("overlapping: {}, sz: {}, (sz == size): {}, (sz == gdata.size): {}\t--- check: {}\n", .{ overlapping, sz, sz == size, sz == grp.size, check });
std.debug.assert(check);
} }
} }
// we need to create a new GroupData // we need to create a new GroupData
var new_group_data = GroupData.initPtr(self.allocator, self, hash, owned_arr[0..], includes_arr[0..], excludes_arr[0..]); var new_group_data = GroupData.initPtr(self.allocator, self, hash, owned_arr[0..], includes_arr[0..], excludes_arr[0..]);
self.groups.append(new_group_data) catch unreachable;
var maybe_valid_if: ?*GroupData = null;
var discard_if: ?*GroupData = null;
if (owned.len == 0) {
self.groups.append(new_group_data) catch unreachable;
} else {
// if this is a group in a family, we may need to do an insert so get the insertion index first
const maybe_index = new_group_data.findInsertionIndex(self.groups.items);
// if there is a previous group in this family, we use it for inserting our discardIf calls
if (new_group_data.findPreviousIndex(self.groups.items, maybe_index)) |prev| {
discard_if = self.groups.items[prev];
}
if (maybe_index) |index| {
maybe_valid_if = self.groups.items[index];
self.groups.insert(index, new_group_data) catch unreachable;
} else {
self.groups.append(new_group_data) catch unreachable;
}
// update super on all owned Storages to be the max of size and their current super value
inline for (owned) |t| {
var storage = self.assure(t);
storage.super = std.math.max(storage.super, size);
}
}
// wire up our listeners // wire up our listeners
inline for (owned) |t| self.onConstruct(t).connectBound(new_group_data, "maybeValidIf"); inline for (owned) |t| self.onConstruct(t).beforeBound(maybe_valid_if).connectBound(new_group_data, "maybeValidIf");
inline for (includes) |t| self.onConstruct(t).connectBound(new_group_data, "maybeValidIf"); inline for (includes) |t| self.onConstruct(t).beforeBound(maybe_valid_if).connectBound(new_group_data, "maybeValidIf");
inline for (excludes) |t| self.onDestruct(t).connectBound(new_group_data, "maybeValidIf"); inline for (excludes) |t| self.onDestruct(t).beforeBound(maybe_valid_if).connectBound(new_group_data, "maybeValidIf");
inline for (owned) |t| self.onDestruct(t).connectBound(new_group_data, "discardIf"); inline for (owned) |t| self.onDestruct(t).beforeBound(discard_if).connectBound(new_group_data, "discardIf");
inline for (includes) |t| self.onDestruct(t).connectBound(new_group_data, "discardIf"); inline for (includes) |t| self.onDestruct(t).beforeBound(discard_if).connectBound(new_group_data, "discardIf");
inline for (excludes) |t| self.onConstruct(t).connectBound(new_group_data, "discardIf"); inline for (excludes) |t| self.onConstruct(t).beforeBound(discard_if).connectBound(new_group_data, "discardIf");
// pre-fill the GroupData with any existing entitites that match // pre-fill the GroupData with any existing entitites that match
if (owned.len == 0) { if (owned.len == 0) {
var tmp_view = self.view(owned ++ includes, excludes); var view_iter = self.view(owned ++ includes, excludes).iterator();
var view_iter = tmp_view.iterator();
while (view_iter.next()) |entity| { while (view_iter.next()) |entity| {
new_group_data.entity_set.add(entity); new_group_data.entity_set.add(entity);
} }
} else {} } else {
// we cannot iterate backwards because we want to leave behind valid entities in case of owned types
// maybeValidIf all the entities in the first owned group
var first_owned_storage = self.assure(owned[0]);
for (first_owned_storage.data().*) |entity| {
new_group_data.maybeValidIf(entity);
}
// for(auto *first = std::get<0>(cpools).data(), *last = first + std::get<0>(cpools).size(); first != last; ++first) {
// handler->template maybe_valid_if<std::tuple_element_t<0, std::tuple<std::decay_t<Owned>...>>>(*this, *first);
// }
}
if (owned.len == 0) { if (owned.len == 0) {
return BasicGroup(includes.len, excludes.len).init(&new_group_data.entity_set, self, includes_arr, excludes_arr); return BasicGroup(includes.len, excludes.len).init(&new_group_data.entity_set, self, includes_arr, excludes_arr);
} else { } else {
return OwningGroup(owned.len, includes.len, excludes.len).init(&new_group_data.current, self, owned_arr, includes_arr, excludes_arr); var first_owned_storage = self.assure(owned[0]);
return OwningGroup(owned.len, includes.len, excludes.len).init(&first_owned_storage.super, &new_group_data.current, self, owned_arr, includes_arr, excludes_arr);
} }
} }
@ -481,4 +595,34 @@ pub const Registry = struct {
if (owned.len == 0) return BasicGroup(includes.len, excludes.len); if (owned.len == 0) return BasicGroup(includes.len, excludes.len);
return OwningGroup(owned.len, includes.len, excludes.len); return OwningGroup(owned.len, includes.len, excludes.len);
} }
/// given the 3 group Types arrays, generates a (mostly) unique u64 hash. Simultaneously ensures there are no duped types.
inline fn hashGroupTypes(comptime owned: var, comptime includes: var, comptime excludes: var) u64 {
comptime {
for (owned) |t1| {
for (includes) |t2| {
std.debug.assert(t1 != t2);
for (excludes) |t3| {
std.debug.assert(t1 != t3);
std.debug.assert(t2 != t3);
}
}
}
const owned_str = comptime concatTypes(owned);
const includes_str = comptime concatTypes(includes);
const excludes_str = comptime concatTypes(excludes);
return utils.hashStringFnv(u64, owned_str ++ includes_str ++ excludes_str);
}
}
inline fn concatTypes(comptime types: var) []const u8 {
comptime {
comptime var res: []const u8 = "";
inline for (types) |t| res = res ++ @typeName(t);
return res;
}
}
}; };

@ -83,6 +83,7 @@ pub fn SparseSet(comptime SparseT: type) type {
return self.dense.items.len == 0; return self.dense.items.len == 0;
} }
// TODO: why return a pointer to the slice?
pub fn data(self: Self) *const []SparseT { pub fn data(self: Self) *const []SparseT {
return &self.dense.items; return &self.dense.items;
} }

Loading…
Cancel
Save