2020-06-07 17:29:03 -07:00

629 lines
26 KiB
Zig

const std = @import("std");
const assert = std.debug.assert;
const utils = @import("utils.zig");
const Handles = @import("handles.zig").Handles;
const SparseSet = @import("sparse_set.zig").SparseSet;
const ComponentStorage = @import("component_storage.zig").ComponentStorage;
const Sink = @import("../signals/sink.zig").Sink;
const TypeStore = @import("type_store.zig").TypeStore;
// allow overriding EntityTraits by setting in root via: EntityTraits = EntityTraitsType(.medium);
const root = @import("root");
const entity_traits = if (@hasDecl(root, "EntityTraits")) root.EntityTraits.init() else @import("entity.zig").EntityTraits.init();
// setup the Handles type based on the type set in EntityTraits
const EntityHandles = Handles(entity_traits.entity_type, entity_traits.index_type, entity_traits.version_type);
pub const Entity = entity_traits.entity_type;
const BasicView = @import("views.zig").BasicView;
const MultiView = @import("views.zig").MultiView;
const BasicGroup = @import("groups.zig").BasicGroup;
const OwningGroup = @import("groups.zig").OwningGroup;
/// Stores an ArrayList of components. The max amount that can be stored is based on the type below
pub fn Storage(comptime CompT: type) type {
return ComponentStorage(CompT, Entity);
}
/// the registry is the main gateway to all ecs functionality. It assumes all internal allocations will succeed and returns
/// no errors to keep the API clean and because if a component array cant be allocated you've got bigger problems.
pub const Registry = struct {
handles: EntityHandles,
components: std.AutoHashMap(u32, usize),
contexts: std.AutoHashMap(u32, usize),
groups: std.ArrayList(*GroupData),
singletons: TypeStore,
allocator: *std.mem.Allocator,
/// internal, persistant data structure to manage the entities in a group
const GroupData = struct {
hash: u64,
size: u8,
/// optional. there will be an entity_set for non-owning groups and current for owning
entity_set: SparseSet(Entity) = undefined,
owned: []u32,
include: []u32,
exclude: []u32,
registry: *Registry,
current: usize,
pub fn initPtr(allocator: *std.mem.Allocator, registry: *Registry, hash: u64, owned: []u32, include: []u32, exclude: []u32) *GroupData {
// std.debug.assert(std.mem.indexOfAny(u32, owned, include) == null);
// std.debug.assert(std.mem.indexOfAny(u32, owned, exclude) == null);
// std.debug.assert(std.mem.indexOfAny(u32, include, exclude) == null);
var group_data = allocator.create(GroupData) catch unreachable;
group_data.hash = hash;
group_data.size = @intCast(u8, owned.len + include.len + exclude.len);
if (owned.len == 0) {
group_data.entity_set = SparseSet(Entity).init(allocator);
}
group_data.owned = std.mem.dupe(allocator, u32, owned) catch unreachable;
group_data.include = std.mem.dupe(allocator, u32, include) catch unreachable;
group_data.exclude = std.mem.dupe(allocator, u32, exclude) catch unreachable;
group_data.registry = registry;
group_data.current = 0;
return group_data;
}
pub fn deinit(self: *GroupData, allocator: *std.mem.Allocator) void {
// only deinit th SparseSet for non-owning groups
if (self.owned.len == 0) {
self.entity_set.deinit();
}
allocator.free(self.owned);
allocator.free(self.include);
allocator.free(self.exclude);
allocator.destroy(self);
}
fn maybeValidIf(self: *GroupData, entity: Entity) void {
const isValid: bool = blk: {
for (self.owned) |tid| {
const ptr = self.registry.components.getValue(tid).?;
if (!@intToPtr(*Storage(u1), ptr).contains(entity))
break :blk false;
}
for (self.include) |tid| {
const ptr = self.registry.components.getValue(tid).?;
if (!@intToPtr(*Storage(u1), ptr).contains(entity))
break :blk false;
}
for (self.exclude) |tid| {
const ptr = self.registry.components.getValue(tid).?;
if (@intToPtr(*Storage(u1), ptr).contains(entity))
break :blk false;
}
break :blk true;
};
if (self.owned.len == 0) {
if (isValid and !self.entity_set.contains(entity))
self.entity_set.add(entity);
} else {
if (isValid) {
const ptr = self.registry.components.getValue(self.owned[0]).?;
if (!(@intToPtr(*Storage(u1), ptr).set.index(entity) < self.current)) {
for (self.owned) |tid| {
// store.swap hides a safe version that types it correctly
const store_ptr = self.registry.components.getValue(tid).?;
var store = @intToPtr(*Storage(u1), store_ptr);
store.swap(store.data().*[self.current], entity);
}
self.current += 1;
}
}
std.debug.assert(self.owned.len >= 0);
}
}
fn discardIf(self: *GroupData, entity: Entity) void {
if (self.owned.len == 0) {
if (self.entity_set.contains(entity))
self.entity_set.remove(entity);
} else {
const ptr = self.registry.components.getValue(self.owned[0]).?;
var store = @intToPtr(*Storage(u1), ptr);
if (store.contains(entity) and store.set.index(entity) < self.current) {
self.current -= 1;
for (self.owned) |tid| {
const store_ptr = self.registry.components.getValue(tid).?;
store = @intToPtr(*Storage(u1), store_ptr);
store.swap(store.data().*[self.current], entity);
}
}
}
}
/// finds the insertion point for this group by finding anything in the group family (overlapping owned)
/// and finds the least specialized (based on size). This allows the least specialized to update first
/// which ensures more specialized (ie less matches) will always be swapping inside the bounds of
/// the less specialized groups.
fn findInsertionIndex(self: GroupData, groups: []*GroupData) ?usize {
for (groups) |grp, i| {
var overlapping: u8 = 0;
for (grp.owned) |grp_owned| {
if (std.mem.indexOfScalar(u32, self.owned, grp_owned)) |_| overlapping += 1;
}
if (overlapping > 0 and self.size <= grp.size) return i;
}
return null;
}
// TODO: is this the right logic? Should this return just the previous item in the family or be more specific about
// the group size for the index it returns?
/// for discards, the most specialized group in the family needs to do its discard and swap first. This will ensure
/// as each more specialized group does their discards the entity will always remain outside of the "current" index
/// for all groups in the family.
fn findPreviousIndex(self: GroupData, groups: []*GroupData, index: ?usize) ?usize {
if (groups.len == 0) return null;
// we iterate backwards and either index or groups.len is one tick passed where we want to start
var i = if (index) |ind| ind else groups.len;
if (i > 0) i -= 1;
while (i >= 0) : (i -= 1) {
var overlapping: u8 = 0;
for (groups[i].owned) |grp_owned| {
if (std.mem.indexOfScalar(u32, self.owned, grp_owned)) |_| overlapping += 1;
}
if (overlapping > 0) return i;
}
return null;
}
};
pub fn init(allocator: *std.mem.Allocator) Registry {
return Registry{
.handles = EntityHandles.init(allocator),
.components = std.AutoHashMap(u32, usize).init(allocator),
.contexts = std.AutoHashMap(u32, usize).init(allocator),
.groups = std.ArrayList(*GroupData).init(allocator),
.singletons = TypeStore.init(allocator),
.allocator = allocator,
};
}
pub fn deinit(self: *Registry) void {
var it = self.components.iterator();
while (it.next()) |ptr| {
// HACK: we dont know the Type here but we need to call deinit
var storage = @intToPtr(*Storage(u1), ptr.value);
storage.deinit();
}
for (self.groups.items) |grp| {
grp.deinit(self.allocator);
}
self.components.deinit();
self.contexts.deinit();
self.groups.deinit();
self.singletons.deinit();
self.handles.deinit();
}
pub fn assure(self: *Registry, comptime T: type) *Storage(T) {
var type_id = utils.typeId(T);
if (self.components.get(type_id)) |kv| {
return @intToPtr(*Storage(T), kv.value);
}
var comp_set = Storage(T).initPtr(self.allocator);
var comp_set_ptr = @ptrToInt(comp_set);
_ = self.components.put(type_id, comp_set_ptr) catch unreachable;
return comp_set;
}
/// Prepares a pool for the given type if required
pub fn prepare(self: *Registry, comptime T: type) void {
_ = self.assure(T);
}
/// Returns the number of existing components of the given type
pub fn len(self: *Registry, comptime T: type) usize {
self.assure(T).len();
}
/// Increases the capacity of the registry or of the pools for the given component
pub fn reserve(self: *Self, comptime T: type, cap: usize) void {
self.assure(T).reserve(cap);
}
/// Direct access to the list of components of a given pool
pub fn raw(self: Registry, comptime T: type) []T {
return self.assure(T).raw();
}
/// Direct access to the list of entities of a given pool
pub fn data(self: Registry, comptime T: type) []Entity {
return self.assure(T).data().*;
}
pub fn valid(self: *Registry, entity: Entity) bool {
return self.handles.isAlive(entity);
}
/// Returns the entity identifier without the version
pub fn entityId(self: Registry, entity: Entity) Entity {
return entity & entity_traits.entity_mask;
}
/// Returns the version stored along with an entity identifier
pub fn version(self: *Registry, entity: Entity) entity_traits.version_type {
return @truncate(entity_traits.version_type, entity >> @bitSizeOf(entity_traits.index_type));
}
/// Creates a new entity and returns it
pub fn create(self: *Registry) Entity {
return self.handles.create();
}
/// Destroys an entity
pub fn destroy(self: *Registry, entity: Entity) void {
assert(self.valid(entity));
self.removeAll(entity);
self.handles.remove(entity) catch unreachable;
}
pub fn add(self: *Registry, entity: Entity, value: var) void {
assert(self.valid(entity));
self.assure(@TypeOf(value)).add(entity, value);
}
/// shortcut for adding raw comptime_int/float without having to @as cast
pub fn addTyped(self: *Registry, comptime T: type, entity: Entity, value: T) void {
self.add(entity, value);
}
/// Replaces the given component for an entity
pub fn replace(self: *Registry, entity: Entity, value: var) void {
assert(self.valid(entity));
self.assure(@TypeOf(value)).replace(entity, value);
}
/// shortcut for replacing raw comptime_int/float without having to @as cast
pub fn replaceTyped(self: *Registry, comptime T: type, entity: Entity, value: T) void {
self.replace(entity, value);
}
pub fn addOrReplace(self: *Registry, entity: Entity, value: var) void {
assert(self.valid(entity));
const store = self.assure(@TypeOf(value));
if (store.tryGet(entity)) |found| {
found.* = value;
} else {
store.add(entity, value);
}
}
/// shortcut for add-or-replace raw comptime_int/float without having to @as cast
pub fn addOrReplaceTyped(self: *Registry, T: type, entity: Entity, value: T) void {
self.addOrReplace(entity, value);
}
/// Removes the given component from an entity
pub fn remove(self: *Registry, comptime T: type, entity: Entity) void {
assert(self.valid(entity));
self.assure(T).remove(entity);
}
pub fn removeIfExists(self: *Registry, comptime T: type, entity: Entity) void {
assert(self.valid(entity));
var store = self.assure(T);
if (store.contains(entity))
store.remove(entity);
}
/// Removes all the components from an entity and makes it orphaned
pub fn removeAll(self: *Registry, entity: Entity) void {
assert(self.valid(entity));
var it = self.components.iterator();
while (it.next()) |ptr| {
// HACK: we dont know the Type here but we need to be able to call methods on the Storage(T)
var store = @intToPtr(*Storage(u128), ptr.value);
if (store.contains(entity)) store.remove(entity);
}
}
pub fn has(self: *Registry, comptime T: type, entity: Entity) bool {
assert(self.valid(entity));
return self.assure(T).set.contains(entity);
}
pub fn get(self: *Registry, comptime T: type, entity: Entity) *T {
assert(self.valid(entity));
return self.assure(T).get(entity);
}
pub fn getConst(self: *Registry, comptime T: type, entity: Entity) T {
assert(self.valid(entity));
return self.assure(T).getConst(entity);
}
/// Returns a reference to the given component for an entity creating it if necessary
pub fn getOrAdd(self: *Registry, comptime T: type, entity: Entity) *T {
if (self.has(T, entity)) return self.get(T, entity);
self.add(T, entity, std.mem.zeros(T));
return self.get(T, type);
}
pub fn tryGet(self: *Registry, comptime T: type, entity: Entity) ?*T {
return self.assure(T).tryGet(entity);
}
/// Returns a Sink object for the given component to add/remove listeners with
pub fn onConstruct(self: *Registry, comptime T: type) Sink(Entity) {
return self.assure(T).onConstruct();
}
/// Returns a Sink object for the given component to add/remove listeners with
pub fn onUpdate(self: *Registry, comptime T: type) Sink(Entity) {
return self.assure(T).onUpdate();
}
/// Returns a Sink object for the given component to add/remove listeners with
pub fn onDestruct(self: *Registry, comptime T: type) Sink(Entity) {
return self.assure(T).onDestruct();
}
/// Binds an object to the context of the registry
pub fn setContext(self: *Registry, context: var) void {
std.debug.assert(@typeInfo(@TypeOf(context)) == .Pointer);
var type_id = utils.typeId(@typeInfo(@TypeOf(context)).Pointer.child);
_ = self.contexts.put(type_id, @ptrToInt(context)) catch unreachable;
}
/// Unsets a context variable if it exists
pub fn unsetContext(self: *Registry, comptime T: type) void {
std.debug.assert(@typeInfo(T) != .Pointer);
_ = self.contexts.put(utils.typeId(T), 0) catch unreachable;
}
/// Returns a pointer to an object in the context of the registry
pub fn getContext(self: *Registry, comptime T: type) ?*T {
std.debug.assert(@typeInfo(T) != .Pointer);
return if (self.contexts.get(utils.typeId(T))) |ptr|
return if (ptr.value > 0) @intToPtr(*T, ptr.value) else null
else
null;
}
/// provides access to a TypeStore letting you add singleton components to the registry
pub fn singletons(self: Registry) TypeStore {
return self.singletons;
}
pub fn sort(self: *Registry, comptime T: type) void {
const comp = self.assure(T);
std.debug.assert(comp.super == 0);
unreachable;
}
/// Checks whether the given component belongs to any group. If so, it is not sortable directly.
pub fn sortable(self: *Registry, comptime T: type) bool {
return self.assure(T).super == 0;
}
pub fn view(self: *Registry, comptime includes: var, comptime excludes: var) ViewType(includes, excludes) {
std.debug.assert(@typeInfo(@TypeOf(includes)) == .Struct);
std.debug.assert(@typeInfo(@TypeOf(excludes)) == .Struct);
std.debug.assert(includes.len > 0);
// just one include so use the optimized BasicView
if (includes.len == 1 and excludes.len == 0)
return BasicView(includes[0]).init(self.assure(includes[0]));
var includes_arr: [includes.len]u32 = undefined;
inline for (includes) |t, i| {
_ = self.assure(t);
includes_arr[i] = utils.typeId(t);
}
var excludes_arr: [excludes.len]u32 = undefined;
inline for (excludes) |t, i| {
_ = self.assure(t);
excludes_arr[i] = utils.typeId(t);
}
return MultiView(includes.len, excludes.len).init(self, includes_arr, excludes_arr);
}
/// returns the Type that a view will be based on the includes and excludes
fn ViewType(comptime includes: var, comptime excludes: var) type {
if (includes.len == 1 and excludes.len == 0) return BasicView(includes[0]);
return MultiView(includes.len, excludes.len);
}
/// creates an optimized group for iterating components. Note that types are ORDER DEPENDENDANT for now, so always pass component
/// types in the same order.
pub fn group(self: *Registry, comptime owned: var, comptime includes: var, comptime excludes: var) GroupType(owned, includes, excludes) {
std.debug.assert(@typeInfo(@TypeOf(owned)) == .Struct);
std.debug.assert(@typeInfo(@TypeOf(includes)) == .Struct);
std.debug.assert(@typeInfo(@TypeOf(excludes)) == .Struct);
std.debug.assert(owned.len + includes.len > 0);
std.debug.assert(owned.len + includes.len + excludes.len > 1);
var owned_arr: [owned.len]u32 = undefined;
inline for (owned) |t, i| {
_ = self.assure(t);
owned_arr[i] = utils.typeId(t);
}
var includes_arr: [includes.len]u32 = undefined;
inline for (includes) |t, i| {
_ = self.assure(t);
includes_arr[i] = utils.typeId(t);
}
var excludes_arr: [excludes.len]u32 = undefined;
inline for (excludes) |t, i| {
_ = self.assure(t);
excludes_arr[i] = utils.typeId(t);
}
// create a unique hash to identify the group
var maybe_group_data: ?*GroupData = null;
comptime const hash = comptime hashGroupTypes(owned, includes, excludes);
for (self.groups.items) |grp| {
// TODO: these checks rely on owned/include/exclude to all be in the same order. fix that.
// TODO: prolly dont need the mem.eql since hash is the same damn thing
if (grp.hash == hash and std.mem.eql(u32, grp.owned, owned_arr[0..]) and std.mem.eql(u32, grp.include, includes_arr[0..]) and std.mem.eql(u32, grp.exclude, excludes_arr[0..])) {
maybe_group_data = grp;
break;
}
}
// do we already have the GroupData?
if (maybe_group_data) |group_data| {
// non-owning groups
if (owned.len == 0) {
return BasicGroup(includes.len, excludes.len).init(&group_data.entity_set, self, includes_arr, excludes_arr);
} else {
var first_owned = self.assure(owned[0]);
return OwningGroup(owned.len, includes.len, excludes.len).init(&first_owned.super, &group_data.current, self, owned_arr, includes_arr, excludes_arr);
}
}
const size = owned.len + includes.len + excludes.len;
// before adding the group we need to do some checks to make sure there arent other owning groups with the same types
if (std.builtin.mode == .Debug and owned.len > 0) {
std.debug.warn("\n", .{});
for (self.groups.items) |grp| {
if (grp.owned.len == 0) continue;
var overlapping: u8 = 0;
for (grp.owned) |grp_owned| {
if (std.mem.indexOfScalar(u32, &owned_arr, grp_owned)) |_| overlapping += 1;
}
var sz: u8 = overlapping;
for (grp.include) |grp_include| {
if (std.mem.indexOfScalar(u32, &includes_arr, grp_include)) |_| sz += 1;
}
for (grp.exclude) |grp_exclude| {
if (std.mem.indexOfScalar(u32, &excludes_arr, grp_exclude)) |_| sz += 1;
}
const check = overlapping == 0 or ((sz == size) or (sz == grp.size));
std.debug.warn("overlapping: {}, sz: {}, (sz == size): {}, (sz == gdata.size): {}\t--- check: {}\n", .{ overlapping, sz, sz == size, sz == grp.size, check });
std.debug.assert(check);
}
}
// we need to create a new GroupData
var new_group_data = GroupData.initPtr(self.allocator, self, hash, owned_arr[0..], includes_arr[0..], excludes_arr[0..]);
var maybe_valid_if: ?*GroupData = null;
var discard_if: ?*GroupData = null;
if (owned.len == 0) {
self.groups.append(new_group_data) catch unreachable;
} else {
// if this is a group in a family, we may need to do an insert so get the insertion index first
const maybe_index = new_group_data.findInsertionIndex(self.groups.items);
// if there is a previous group in this family, we use it for inserting our discardIf calls
if (new_group_data.findPreviousIndex(self.groups.items, maybe_index)) |prev| {
discard_if = self.groups.items[prev];
}
if (maybe_index) |index| {
maybe_valid_if = self.groups.items[index];
self.groups.insert(index, new_group_data) catch unreachable;
} else {
self.groups.append(new_group_data) catch unreachable;
}
// update super on all owned Storages to be the max of size and their current super value
inline for (owned) |t| {
var storage = self.assure(t);
storage.super = std.math.max(storage.super, size);
}
}
// wire up our listeners
inline for (owned) |t| self.onConstruct(t).beforeBound(maybe_valid_if).connectBound(new_group_data, "maybeValidIf");
inline for (includes) |t| self.onConstruct(t).beforeBound(maybe_valid_if).connectBound(new_group_data, "maybeValidIf");
inline for (excludes) |t| self.onDestruct(t).beforeBound(maybe_valid_if).connectBound(new_group_data, "maybeValidIf");
inline for (owned) |t| self.onDestruct(t).beforeBound(discard_if).connectBound(new_group_data, "discardIf");
inline for (includes) |t| self.onDestruct(t).beforeBound(discard_if).connectBound(new_group_data, "discardIf");
inline for (excludes) |t| self.onConstruct(t).beforeBound(discard_if).connectBound(new_group_data, "discardIf");
// pre-fill the GroupData with any existing entitites that match
if (owned.len == 0) {
var view_iter = self.view(owned ++ includes, excludes).iterator();
while (view_iter.next()) |entity| {
new_group_data.entity_set.add(entity);
}
} else {
// we cannot iterate backwards because we want to leave behind valid entities in case of owned types
// maybeValidIf all the entities in the first owned group
var first_owned_storage = self.assure(owned[0]);
for (first_owned_storage.data().*) |entity| {
new_group_data.maybeValidIf(entity);
}
// for(auto *first = std::get<0>(cpools).data(), *last = first + std::get<0>(cpools).size(); first != last; ++first) {
// handler->template maybe_valid_if<std::tuple_element_t<0, std::tuple<std::decay_t<Owned>...>>>(*this, *first);
// }
}
if (owned.len == 0) {
return BasicGroup(includes.len, excludes.len).init(&new_group_data.entity_set, self, includes_arr, excludes_arr);
} else {
var first_owned_storage = self.assure(owned[0]);
return OwningGroup(owned.len, includes.len, excludes.len).init(&first_owned_storage.super, &new_group_data.current, self, owned_arr, includes_arr, excludes_arr);
}
}
/// returns the Type that a view will be based on the includes and excludes
fn GroupType(comptime owned: var, comptime includes: var, comptime excludes: var) type {
if (owned.len == 0) return BasicGroup(includes.len, excludes.len);
return OwningGroup(owned.len, includes.len, excludes.len);
}
/// given the 3 group Types arrays, generates a (mostly) unique u64 hash. Simultaneously ensures there are no duped types.
inline fn hashGroupTypes(comptime owned: var, comptime includes: var, comptime excludes: var) u64 {
comptime {
for (owned) |t1| {
for (includes) |t2| {
std.debug.assert(t1 != t2);
for (excludes) |t3| {
std.debug.assert(t1 != t3);
std.debug.assert(t2 != t3);
}
}
}
const owned_str = comptime concatTypes(owned);
const includes_str = comptime concatTypes(includes);
const excludes_str = comptime concatTypes(excludes);
return utils.hashStringFnv(u64, owned_str ++ includes_str ++ excludes_str);
}
}
inline fn concatTypes(comptime types: var) []const u8 {
comptime {
comptime var res: []const u8 = "";
inline for (types) |t| res = res ++ @typeName(t);
return res;
}
}
};