zig-raylib-engine/zig-ecs/src/ecs/sparse_set.zig
2023-07-02 21:31:31 -03:00

368 lines
12 KiB
Zig

const std = @import("std");
const utils = @import("utils.zig");
const registry = @import("registry.zig");
const ReverseSliceIterator = @import("utils.zig").ReverseSliceIterator;
/// NOTE: This is a copy of `std.sort.insertionSort` with fixed function pointer
/// syntax to avoid compilation errors.
///
/// Stable in-place sort. O(n) best case, O(pow(n, 2)) worst case.
/// O(1) memory (no allocator required).
/// This can be expressed in terms of `insertionSortContext` but the glue
/// code is slightly longer than the direct implementation.
fn std_sort_insertionSort_clone(
comptime T: type,
items: []T,
context: anytype,
comptime lessThan: *const fn (context: @TypeOf(context), lhs: T, rhs: T) bool,
) void {
var i: usize = 1;
while (i < items.len) : (i += 1) {
const x = items[i];
var j: usize = i;
while (j > 0 and lessThan(context, x, items[j - 1])) : (j -= 1) {
items[j] = items[j - 1];
}
items[j] = x;
}
}
// TODO: fix entity_mask. it should come from EntityTraitsDefinition.
pub fn SparseSet(comptime SparseT: type) type {
return struct {
const Self = @This();
const page_size: usize = 4096;
sparse: std.ArrayList(?[]SparseT),
dense: std.ArrayList(SparseT),
entity_mask: SparseT,
allocator: ?std.mem.Allocator,
pub fn initPtr(allocator: std.mem.Allocator) *Self {
var set = allocator.create(Self) catch unreachable;
set.sparse = std.ArrayList(?[]SparseT).initCapacity(allocator, 16) catch unreachable;
set.dense = std.ArrayList(SparseT).initCapacity(allocator, 16) catch unreachable;
set.entity_mask = registry.entity_traits.entity_mask;
set.allocator = allocator;
return set;
}
pub fn init(allocator: std.mem.Allocator) Self {
return Self{
.sparse = std.ArrayList(?[]SparseT).init(allocator),
.dense = std.ArrayList(SparseT).init(allocator),
.entity_mask = registry.entity_traits.entity_mask,
.allocator = null,
};
}
pub fn deinit(self: *Self) void {
for (self.sparse.items) |array| {
if (array) |arr| {
self.sparse.allocator.free(arr);
}
}
self.dense.deinit();
self.sparse.deinit();
if (self.allocator) |allocator| {
allocator.destroy(self);
}
}
pub fn page(self: Self, sparse: SparseT) usize {
return (sparse & self.entity_mask) / page_size;
}
fn offset(_: Self, sparse: SparseT) usize {
return sparse & (page_size - 1);
}
fn assure(self: *Self, pos: usize) []SparseT {
if (pos >= self.sparse.items.len) {
const start_pos = self.sparse.items.len;
self.sparse.resize(pos + 1) catch unreachable;
self.sparse.expandToCapacity();
@memset(self.sparse.items[start_pos..], null);
}
if (self.sparse.items[pos] == null) {
var new_page = self.sparse.allocator.alloc(SparseT, page_size) catch unreachable;
@memset(new_page, std.math.maxInt(SparseT));
self.sparse.items[pos] = new_page;
}
return self.sparse.items[pos].?;
}
/// Increases the capacity of a sparse sets index array
pub fn reserve(self: *Self, cap: usize) void {
self.sparse.resize(cap) catch unreachable;
}
/// Returns the number of dense elements that a sparse set has currently allocated space for
pub fn capacity(self: *Self) usize {
return self.dense.capacity;
}
/// Returns the number of dense elements in a sparse set
pub fn len(self: Self) usize {
return self.dense.items.len;
}
pub fn empty(self: *Self) bool {
return self.dense.items.len == 0;
}
pub fn data(self: Self) []const SparseT {
return self.dense.items;
}
pub fn dataPtr(self: Self) *const []SparseT {
return &self.dense.items;
}
pub fn contains(self: Self, sparse: SparseT) bool {
const curr = self.page(sparse);
return curr < self.sparse.items.len and
self.sparse.items[curr] != null and
self.sparse.items[curr].?[self.offset(sparse)] != std.math.maxInt(SparseT);
}
/// Returns the position of an entity in a sparse set
pub fn index(self: Self, sparse: SparseT) SparseT {
std.debug.assert(self.contains(sparse));
return self.sparse.items[self.page(sparse)].?[self.offset(sparse)];
}
/// Assigns an entity to a sparse set
pub fn add(self: *Self, sparse: SparseT) void {
std.debug.assert(!self.contains(sparse));
// assure(page(entt))[offset(entt)] = packed.size()
self.assure(self.page(sparse))[self.offset(sparse)] = @as(SparseT, @intCast(self.dense.items.len));
_ = self.dense.append(sparse) catch unreachable;
}
/// Removes an entity from a sparse set
pub fn remove(self: *Self, sparse: SparseT) void {
std.debug.assert(self.contains(sparse));
const curr = self.page(sparse);
const pos = self.offset(sparse);
const last_dense = self.dense.items[self.dense.items.len - 1];
self.dense.items[self.sparse.items[curr].?[pos]] = last_dense;
self.sparse.items[self.page(last_dense)].?[self.offset(last_dense)] = self.sparse.items[curr].?[pos];
self.sparse.items[curr].?[pos] = std.math.maxInt(SparseT);
_ = self.dense.pop();
}
/// Swaps two entities in the internal packed and sparse arrays
pub fn swap(self: *Self, lhs: SparseT, rhs: SparseT) void {
var from = &self.sparse.items[self.page(lhs)].?[self.offset(lhs)];
var to = &self.sparse.items[self.page(rhs)].?[self.offset(rhs)];
std.mem.swap(SparseT, &self.dense.items[from.*], &self.dense.items[to.*]);
std.mem.swap(SparseT, from, to);
}
/// Sort elements according to the given comparison function
pub fn sort(self: *Self, context: anytype, comptime lessThan: *const fn (@TypeOf(context), SparseT, SparseT) bool) void {
std_sort_insertionSort_clone(SparseT, self.dense.items, context, lessThan);
for (self.dense.items, 0..) |_, i| {
const item = @as(SparseT, @intCast(i));
self.sparse.items[self.page(self.dense.items[self.page(item)])].?[self.offset(self.dense.items[self.page(item)])] = @as(SparseT, @intCast(i));
}
}
/// Sort elements according to the given comparison function. Use this when a data array needs to stay in sync with the SparseSet
/// by passing in a "swap_context" that contains a "swap" method with a sig of fn(ctx,SparseT,SparseT)void
pub fn arrange(self: *Self, length: usize, context: anytype, comptime lessThan: *const fn (@TypeOf(context), SparseT, SparseT) bool, swap_context: anytype) void {
std_sort_insertionSort_clone(SparseT, self.dense.items[0..length], context, lessThan);
for (self.dense.items[0..length], 0..) |_, pos| {
var curr = @as(SparseT, @intCast(pos));
var next = self.index(self.dense.items[curr]);
while (curr != next) {
swap_context.swap(self.dense.items[curr], self.dense.items[next]);
self.sparse.items[self.page(self.dense.items[curr])].?[self.offset(self.dense.items[curr])] = curr;
curr = next;
next = self.index(self.dense.items[curr]);
}
}
}
/// Sort entities according to their order in another sparse set. Other is the master in this case.
pub fn respect(self: *Self, other: *Self) void {
var pos = @as(SparseT, 0);
var i = @as(SparseT, 0);
while (i < other.dense.items.len) : (i += 1) {
if (self.contains(other.dense.items[i])) {
if (other.dense.items[i] != self.dense.items[pos]) {
self.swap(self.dense.items[pos], other.dense.items[i]);
}
pos += 1;
}
}
}
pub fn clear(self: *Self) void {
for (self.sparse.items, 0..) |array, i| {
if (array) |arr| {
self.sparse.allocator.free(arr);
self.sparse.items[i] = null;
}
}
self.sparse.items.len = 0;
self.dense.items.len = 0;
}
pub fn reverseIterator(self: *Self) ReverseSliceIterator(SparseT) {
return ReverseSliceIterator(SparseT).init(self.dense.items);
}
};
}
fn printSet(set: *SparseSet(u32, u8)) void {
std.debug.print("\nsparse -----\n", .{});
for (set.sparse.items) |sparse| {
std.debug.print("{}\t", .{sparse});
}
std.debug.print("\ndense -----\n", .{});
for (set.dense.items) |dense| {
std.debug.print("{}\t", .{dense});
}
std.debug.print("\n\n", .{});
}
test "add/remove/clear" {
var set = SparseSet(u32).initPtr(std.testing.allocator);
defer set.deinit();
set.add(4);
set.add(3);
try std.testing.expectEqual(set.len(), 2);
try std.testing.expectEqual(set.index(4), 0);
try std.testing.expectEqual(set.index(3), 1);
set.remove(4);
try std.testing.expectEqual(set.len(), 1);
set.clear();
try std.testing.expectEqual(set.len(), 0);
}
test "grow" {
var set = SparseSet(u32).initPtr(std.testing.allocator);
defer set.deinit();
var i = @as(usize, std.math.maxInt(u8));
while (i > 0) : (i -= 1) {
set.add(@as(u32, @intCast(i)));
}
try std.testing.expectEqual(set.len(), std.math.maxInt(u8));
}
test "swap" {
var set = SparseSet(u32).initPtr(std.testing.allocator);
defer set.deinit();
set.add(4);
set.add(3);
try std.testing.expectEqual(set.index(4), 0);
try std.testing.expectEqual(set.index(3), 1);
set.swap(4, 3);
try std.testing.expectEqual(set.index(3), 0);
try std.testing.expectEqual(set.index(4), 1);
}
test "data() synced" {
var set = SparseSet(u32).initPtr(std.testing.allocator);
defer set.deinit();
set.add(0);
set.add(1);
set.add(2);
set.add(3);
var data = set.data();
try std.testing.expectEqual(data[1], 1);
try std.testing.expectEqual(set.len(), data.len);
set.remove(0);
set.remove(1);
try std.testing.expectEqual(set.len(), set.data().len);
}
test "iterate" {
var set = SparseSet(u32).initPtr(std.testing.allocator);
defer set.deinit();
set.add(0);
set.add(1);
set.add(2);
set.add(3);
var i: u32 = @as(u32, @intCast(set.len())) - 1;
var iter = set.reverseIterator();
while (iter.next()) |entity| {
try std.testing.expectEqual(i, entity);
if (i > 0) i -= 1;
}
}
test "respect 1" {
var set1 = SparseSet(u32).initPtr(std.testing.allocator);
defer set1.deinit();
var set2 = SparseSet(u32).initPtr(std.testing.allocator);
defer set2.deinit();
set1.add(3);
set1.add(4);
set1.add(5);
set1.add(6);
set1.add(7);
set2.add(8);
set2.add(6);
set2.add(4);
set1.respect(set2);
try std.testing.expectEqual(set1.dense.items[0], set2.dense.items[1]);
try std.testing.expectEqual(set1.dense.items[1], set2.dense.items[2]);
}
const desc_u32 = std.sort.desc(u32);
test "respect 2" {
var set = SparseSet(u32).initPtr(std.testing.allocator);
defer set.deinit();
set.add(5);
set.add(2);
set.add(4);
set.add(1);
set.add(3);
set.sort({}, desc_u32);
for (set.dense.items, 0..) |item, i| {
if (i < set.dense.items.len - 1) {
std.debug.assert(item > set.dense.items[i + 1]);
}
}
}