zig-raylib-engine/zig-ecs/src/ecs/component_storage.zig

292 lines
10 KiB
Zig
Raw Normal View History

2020-05-31 21:28:29 -07:00
const std = @import("std");
const warn = std.debug.warn;
const utils = @import("utils.zig");
const SparseSet = @import("sparse_set.zig").SparseSet;
2020-06-01 20:05:07 -07:00
const Signal = @import("../signals/signal.zig").Signal;
const Sink = @import("../signals/sink.zig").Sink;
2020-05-31 21:28:29 -07:00
2020-06-01 20:05:07 -07:00
/// Stores an ArrayList of components along with a SparseSet of entities. The max amount that can be stored is
/// based on the max value of DenseT
2020-05-31 21:28:29 -07:00
pub fn ComponentStorage(comptime CompT: type, comptime EntityT: type, comptime DenseT: type) type {
std.debug.assert(!utils.isComptime(CompT));
// empty (zero-sized) structs will not have an array created
comptime const is_empty_struct = @sizeOf(CompT) == 0;
// HACK: due to this being stored as untyped ptrs, when deinit is called we are casted to a CompT of some random
// non-zero sized type. That will make is_empty_struct false in deinit always so we can't use it. Instead, we stick
// a small dummy struct in the instances ArrayList so it can safely be deallocated.
// Perhaps we should just allocate instances with a dummy allocator or the tmp allocator?
comptime var CompOrAlmostEmptyT = CompT;
if (is_empty_struct)
CompOrAlmostEmptyT = struct { dummy: u1 };
return struct {
const Self = @This();
set: *SparseSet(EntityT, DenseT),
instances: std.ArrayList(CompOrAlmostEmptyT),
allocator: ?*std.mem.Allocator,
safe_deinit: fn (*Self) void,
2020-06-03 23:33:59 -07:00
safe_swap: fn (*Self, EntityT, EntityT) void,
2020-06-01 20:05:07 -07:00
construction: Signal(EntityT),
update: Signal(EntityT),
destruction: Signal(EntityT),
2020-05-31 21:28:29 -07:00
pub fn init(allocator: *std.mem.Allocator) Self {
var store = Self{
2020-06-02 19:55:19 -07:00
.set = SparseSet(EntityT, DenseT).initPtr(allocator),
2020-05-31 21:28:29 -07:00
.instances = undefined,
.safe_deinit = struct {
fn deinit(self: *Self) void {
if (!is_empty_struct)
self.instances.deinit();
}
}.deinit,
2020-06-03 23:33:59 -07:00
.safe_swap = struct {
fn swap(self: *Self, lhs: EntityT, rhs: EntityT) void {
if (!is_empty_struct)
std.mem.swap(CompT, &self.instances.items[self.set.index(lhs)], &self.instances.items[self.set.index(rhs)]);
self.set.swap(lhs, rhs);
}
}.swap,
2020-05-31 21:28:29 -07:00
.allocator = null,
2020-06-01 20:05:07 -07:00
.construction = Signal(EntityT).init(allocator),
.update = Signal(EntityT).init(allocator),
.destruction = Signal(EntityT).init(allocator),
2020-05-31 21:28:29 -07:00
};
if (!is_empty_struct)
store.instances = std.ArrayList(CompOrAlmostEmptyT).init(allocator);
return store;
}
pub fn initPtr(allocator: *std.mem.Allocator) *Self {
var store = allocator.create(Self) catch unreachable;
2020-06-02 19:55:19 -07:00
store.set = SparseSet(EntityT, DenseT).initPtr(allocator);
2020-05-31 21:28:29 -07:00
if (!is_empty_struct)
store.instances = std.ArrayList(CompOrAlmostEmptyT).init(allocator);
store.allocator = allocator;
2020-06-01 20:05:07 -07:00
store.construction = Signal(EntityT).init(allocator);
store.update = Signal(EntityT).init(allocator);
store.destruction = Signal(EntityT).init(allocator);
2020-05-31 21:28:29 -07:00
// since we are stored as a pointer, we need to catpure this
store.safe_deinit = struct {
fn deinit(self: *Self) void {
if (!is_empty_struct)
self.instances.deinit();
}
}.deinit;
2020-06-03 23:33:59 -07:00
store.safe_swap = struct {
fn swap(self: *Self, lhs: EntityT, rhs: EntityT) void {
if (!is_empty_struct)
std.mem.swap(CompT, &self.instances.items[self.set.index(lhs)], &self.instances.items[self.set.index(rhs)]);
self.set.swap(lhs, rhs);
}
}.swap;
2020-05-31 21:28:29 -07:00
return store;
}
pub fn deinit(self: *Self) void {
// great care must be taken here. Due to how Registry keeps this struct as pointers anything touching a type
// will be wrong since it has to cast to a random struct when deiniting. Because of all that, is_empty_struct
// will allways be false here so we have to deinit the instances no matter what.
self.safe_deinit(self);
self.set.deinit();
2020-06-01 20:05:07 -07:00
self.construction.deinit();
self.update.deinit();
self.destruction.deinit();
2020-05-31 21:28:29 -07:00
if (self.allocator) |allocator|
allocator.destroy(self);
}
2020-06-01 20:05:07 -07:00
pub fn onConstruct(self: *Self) Sink(EntityT) {
return self.construction.sink();
}
pub fn onUpdate(self: *Self) Sink(EntityT) {
return self.update.sink();
}
pub fn onDestruct(self: *Self) Sink(EntityT) {
return self.destruction.sink();
}
2020-05-31 21:28:29 -07:00
/// Increases the capacity of a component storage
pub fn reserve(self: *Self, cap: usize) void {
self.set.reserve(cap);
if (!is_empty_struct)
self.instances.items.reserve(cap);
}
2020-06-01 20:05:07 -07:00
/// Assigns an entity to a storage and assigns its object
2020-05-31 21:28:29 -07:00
pub fn add(self: *Self, entity: EntityT, value: CompT) void {
if (!is_empty_struct)
_ = self.instances.append(value) catch unreachable;
self.set.add(entity);
2020-06-01 20:05:07 -07:00
self.construction.publish(entity);
}
/// Removes an entity from a storage
pub fn remove(self: *Self, entity: EntityT) void {
2020-06-03 23:33:59 -07:00
self.destruction.publish(entity);
2020-06-01 20:05:07 -07:00
if (!is_empty_struct)
_ = self.instances.swapRemove(self.set.index(entity));
self.set.remove(entity);
2020-05-31 21:28:29 -07:00
}
/// Checks if a view contains an entity
pub fn contains(self: Self, entity: EntityT) bool {
return self.set.contains(entity);
}
pub fn len(self: Self) usize {
return self.set.len();
}
pub usingnamespace if (is_empty_struct)
struct {}
else
struct {
/// Direct access to the array of objects
pub fn raw(self: Self) []CompT {
return self.instances.items;
}
2020-06-01 20:05:07 -07:00
/// Replaces the given component for an entity
pub fn replace(self: *Self, entity: EntityT, value: CompT) void {
self.get(entity).* = value;
self.update.publish(entity);
}
2020-05-31 21:28:29 -07:00
/// Returns the object associated with an entity
pub fn get(self: *Self, entity: EntityT) *CompT {
std.debug.assert(self.contains(entity));
return &self.instances.items[self.set.index(entity)];
}
pub fn getConst(self: *Self, entity: EntityT) CompT {
return self.instances.items[self.set.index(entity)];
}
/// Returns a pointer to the object associated with an entity, if any.
pub fn tryGet(self: *Self, entity: EntityT) ?*CompT {
return if (self.set.contains(entity)) &self.instances.items[self.set.index(entity)] else null;
}
pub fn tryGetConst(self: *Self, entity: EntityT) ?CompT {
return if (self.set.contains(entity)) self.instances.items[self.set.index(entity)] else null;
}
};
/// Direct access to the array of entities
pub fn data(self: Self) *const []EntityT {
return self.set.data();
}
/// Swaps entities and objects in the internal packed arrays
pub fn swap(self: *Self, lhs: EntityT, rhs: EntityT) void {
2020-06-03 23:33:59 -07:00
self.safe_swap(self, lhs, rhs);
2020-05-31 21:28:29 -07:00
}
pub fn clear(self: *Self) void {
if (!is_empty_struct)
self.instances.items.len = 0;
self.set.clear();
}
};
}
test "add/try-get/remove/clear" {
var store = ComponentStorage(f32, u32, u8).init(std.testing.allocator);
defer store.deinit();
store.add(3, 66.45);
std.testing.expectEqual(store.tryGetConst(3).?, 66.45);
if (store.tryGet(3)) |found| std.testing.expectEqual(@as(f32, 66.45), found.*);
store.remove(3);
var val_null = store.tryGet(3);
std.testing.expectEqual(val_null, null);
store.clear();
}
test "add/get/remove" {
var store = ComponentStorage(f32, u32, u8).init(std.testing.allocator);
defer store.deinit();
store.add(3, 66.45);
if (store.tryGet(3)) |found| std.testing.expectEqual(@as(f32, 66.45), found.*);
std.testing.expectEqual(store.tryGetConst(3).?, 66.45);
store.remove(3);
std.testing.expectEqual(store.tryGet(3), null);
}
test "iterate" {
var store = ComponentStorage(f32, u32, u8).initPtr(std.testing.allocator);
defer store.deinit();
store.add(3, 66.45);
store.add(5, 66.45);
store.add(7, 66.45);
for (store.data().*) |entity, i| {
if (i == 0)
std.testing.expectEqual(entity, 3);
if (i == 1)
std.testing.expectEqual(entity, 5);
if (i == 2)
std.testing.expectEqual(entity, 7);
}
}
test "empty component" {
const Empty = struct {};
var store = ComponentStorage(Empty, u32, u8).initPtr(std.testing.allocator);
defer store.deinit();
store.add(3, Empty{});
store.remove(3);
}
2020-06-01 20:05:07 -07:00
fn construct(e: u32) void {
std.debug.assert(e == 3);
}
fn update(e: u32) void {
std.debug.assert(e == 3);
}
fn destruct(e: u32) void {
std.debug.assert(e == 3);
}
test "signals" {
var store = ComponentStorage(f32, u32, u8).init(std.testing.allocator);
defer store.deinit();
store.onConstruct().connect(construct);
store.onUpdate().connect(update);
store.onDestruct().connect(destruct);
store.add(3, 66.45);
store.replace(3, 45.64);
store.remove(3);
store.onConstruct().disconnect(construct);
store.onUpdate().disconnect(update);
store.onDestruct().disconnect(destruct);
store.add(4, 66.45);
store.replace(4, 45.64);
store.remove(4);
}